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ABSTRACT

The temporal development of forces acting on a rotating cylinder is investigated numer-

ically in response to a variety of time-dependent rotation rates. Solutions are presented for

several types of rotation that illustrate significant effects of the rotation rate on lift, drag and

lift/drag coefficients. Of special interest is the formulation of an optimal control problem for

the case of constant speed of rotation. We find an optimal rotation rate that achieves the

maximum value of time-averaged lift/drag ratio.
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1. INTRODUCTION

It has been realized that the next generation of high performance aircraft must be de-

signed to have the capability to produce high lift-to-drag ratio during certain maneuvers.

Thus, it is desirable to devise an effective method to achieve such aerodynamic perfor-

mance. Although various efforts iLdve been made to improve the aerodynamic characteristics

of advanced aircraft over the years, it is now commonly believed that any further gains in

aerodynamics will mostly be contributed by the application of various types of flow control

rmcchanisms [1]. Consequently, in recent years there has been increased interest in the study

of control problems arising in fluid flow systems. However, the principal progress so far has

been essentially accomplished by experimental investigations, while the analytical or numer-

ical approach has been remained only in its infancy. Most recently, a successful theoretical

approach has been developed by Sritharan [2, 3] for a class of optimal control problems in

viscous flow. Other contributions in this area of research have been presented by Gunzburger

et al. [4], Abergel and Temam [5] and Ou and Burns [6].

In the area of boundary-layer separation control, several methods have been developed

experimentally to provide various effective results of flow control, for example moving surface,

blowing, suction, injection of a different gas, etc. In particular, the effectiveness of the moving

surfaces was demonstrated experimentally by Modi et al. [7] on an airfoil. They reported a

successful experiment on boundary-layer control by placing rotating cylinders at the leading

and trailing edges of an airfoil. It has been shown that this mechanism can retard the initial

growth of the boundary layer, with important consequences for lift enhancement and stall

delay. In spite of the fact that considerable aerodynamic benefits were gained by changing

the cylinder speed ratio, in their experiments the speed of rotation was restricted to constant

values. However, in an unsteady flow, a constant rotation rate of a rotating cylinder may not

correspond to the optimal performance when an airfoil is undergoing a rapid maneuver. This

motivated us to consider the fundamental problem regarding the unsteady flow control. We

therefore propose a model for the numerical study of controlling the temporal development
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of the flow field arouDd a circular cylinder. As adopted by Modi's work, a moving boundary

control mechanism is employed, i.e. rotation of the cylinder.

The main thrust of the current investigation is on simulation and control of an unsteady

flow generated by a circular cylinder undergoing a combined (steady or unsteady) rotatory

and rectilinear mot;on. In the past few decades, although many investigations associated with

rotating cylinders have been made experimentally [8, 9, 10] and numerically [11, 12, 13, 14],

most of these works axe primarily concerned with the effect of rotation rate upon the vortex

shedding process. It appears that the effect of the rotation rate on the forces exerted by the

fluid has received far less attention despite the fact that it has important practical engineering

applications.

In this paper we report the numerical results of the temporal development of forces

on the rotating cylinder response to a variety of time-dependent rotation rates. Precise

und,--standing of this moving surface mechanism in boundary layer control may provide an

effective way for lift enhancement and drag reduction. By treating the rotation rate as a

control variable in this model, we will eventually be interested in finding the optimal control

(i.e. the op ia: ajectory of the rotation rate) that maximizes the lift-to-drag ratio over a

fixed time interval. ,'ee hope this study will serve as a guide on the formulation of optimal

flow control problems, lead to possible implementation of a computational algorithm to

calculate the optimal solution, and uitiniately contribute a useful systematic algorithm for

many practical control designs of high-performance .irciaft.

2. MATHEMATICAL AND NUMERICAL FORMULATIONS

We consider control problems for a two-dimensional viscous incompressible flow gener-

ated by an impulsively started circular cylinder. The cylinder is translated with a constant

rectilinear speed U normal to its generator and is simultaneously rotated in the counterclock-

wise direction with an angular velocity f(t) about its axis. This problem is investigated nu-

merically by solving a velocity/vorticity formulation of the Navier-Stokes equations with an

implementation of the Biot-Savart law. The numerical approach used in the present study is
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the one developed by Chen [15] for the problem of a circular cylinder oscillating in a rectan-

gular box. It is based on ar. explicit finite-difference/pseudo-spectral technique to yield time

accurate solutions to the governing equations. This numerical algorithm was further modified

to investigate an unsteady flow around a rotating cylinder undergoing constant rotational

speeds [14], and time-dependent rotation rates [16]. Throughout the solution procedures, a

particular integral representation for flow kinematics proposed by Wu and Thompson [17]

provides the basic link between the velocity and vorticity fields.

2.1 Governing Equations

For a two-dimensional unsteady viscous flow in incompressible fluid, the dimensionless

Cartesian coordinate form of the governing equations for vorticity and velocity can be written

as
a 2 V2
+-.+

_W = (1)
t Re

and

V 2 , = _V X (W, e. (2)

The cylinder radius a is used as the length scale while a/U is used as the time scale. The

Reynolds number Re = 2Ua/v is based on the cylinder diameter 2a and the magnitude U

of the rectilinear velocity.

A nonrotating reference frame translating with the cylinder is "-inployed. In this frame

the dimensionless boundary conditions for the problem of a rotating cylinder ran be written

as
-a(t)y4 + a(t)xe- for (x, y) E FU = a~t~e, Y(3){ e, for VTT4=. --+ 0o,

where r denotes the impermeable solid boundary of the cylinder B. The angular/rectilinear

speed ratio a(t) = fl(t)a/U is the primary control parameter in this paper.

This velocity/vorticity formulation is especially well suited to treating initial development

of the flow generated by impulsively started bodies in which a relatively small vortical viscous
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region is embedded in a much larger inviscid potential flow. Consequently, the computational

domain may be restricted to a smaller region where the vorticity contributions are contained.

2.2 Integral Representation For Flow Kinematics

In the simulation of an exterior flow problem, one of the difficulties encountered is

that of prescribing the appropriate nonvelocity boundary conditions at the solid surface. In

particular, the numerical method based on the velocity/vorticity formulation will require the

boundary vorticity values at the solid surface in the solution procedure. This difficulty can

be overcome by the application of an integral representation for the kinematics of fl6w field.

This kinematic relationship between velocity and vorticity fields on the domain is known as

the generalized Biot-Savart law of induced velocity

1 2(, t) x (r)dA (4)

Ir- 12

where D is the region occupied by the fluid. Here i9o represents the field point located in the

domain where the velocity is evaluated. Thus, the boundary vorticity values can be obtained

by setting the surface nodes as the field point r'0 in (4).

In fact, this integral representation not only allows one to obtain boundary vorticity

on the solid surface but also can determine the velocity point-by-point explicitly if all vor-

ticity values are known everywhere in the domain of interest. Moreover, it often exhibits

more realistic behavior at the outer perimeter of the computational domain than asymptotic

techniques used in other formulations. This indicates that the difficulty resulting from the

imposed far-field condition is removed by the application of this integral constraint, provided

that no vorticity escapes from the computational domain.

2.3 Numerical Solution Procedure

In order to accommodate problems of a time-dependent domain, Eqs. (1) and (2) can

be recast into a body-fitted coordinate system. This coordinate allows one to deal with
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an unsteady flow problem for computing any arbitrary body shapes (or even with moving

boundaries) on a fixed computational rectangular grid, and the interpolation of the grid

points and boundary conditions in the physical space are not necessary.

The vorticity transport Eq. (1) and Poi3son Eq. (2) can be written in term of time-

varying generalized body-fitted coordinate system ( , 17) as follows:

t= C Y1 - - -

1
-1 i,,(uw)4 - £iduw),, + xn(vwh - X(vw),]

2 2
+ - (oJ2 2Pw + 1wn) + -(Pw + Qwn), 5

and J auf - 2#u%, + yu,,, + J 2 (Put + Qu,) = J(X,7w4 - xfw),(

v - 29v, + -tv,,, + J 2(PvC + Qvn) J(ywt - y4w,), 6
where

17 174 t 1( 7 )P = =x + y, Q = rlX + 71y, J = Xcy, - X,7y( .

The vorticity transport Eq. (5) is first discrFtized by a second order central difference in

the radial direction and a pseudospectral transform method in the circumferential direction

for all spatial derivatives. This semi-discretization form of Eq. (5), consisting of a system of

ordinary differential equations in time can be written as

dt = F(W.), W^ = (w2,2, WM-1,N-,) T  (8)

for all the interior grid points. Therefore, the calculation procedure to advance the solution

for any given time increment can be summarized as follows:

Step 1: Internal vorticity over the fluid region at each interior field point is calculated

by solving the discretized vorticity transport equation. An explicit second-order rational

Runge-Kutta marching scheme based on the work of [18] is used to advance in time for (8):

= + 2§1&143~) - 93&gl4g) (9)
(93, §3){1 =F()t

92 = F( + 0.5§,)At (10)

§= 21 -92



where (:, ) denotes the scalar product.

Step 2: Using known internal vorticity values at all the interior grid points from step 1,

Eq. (4) is used to update the boundary vorticity values at all the surface nodes. In Eq. (4),

f' represents all grid points located on the solid boundary.

Step 3: At this stage, all the vorticity values in the computational domain are known at

the new time level. Then, the velocity at points on the outer perimeter of the computational

domain are calculated by the integral kinematic constraint. In Eq. (4), Ko now denotes the

points located on the outer perimeter of the computational domain.

Step 4: The new velocity field can be established by solving the Poisson Eq. (6) with pre-

scribed solid boundary conditions and outer boundary conditions that have been determined

from step 3. The resulting discretized Poisson equation is an 11-banded matrix equation.

It is then solved by a preconditioned biconjugate gradient routine [19]. This step completes

the computational loop for each time level.

One further important point to be noted in this integral approach is the determination

of the initial flow field. This integral approach enables the numerical code to generate the

initial velocity field -y executing one cycle of the solution procedure (from step 2 to step 4)

rather than employing any additional treatments.

3. RESULTS AND DISCUSSIONS

An important consequence of the calculated solution of the velocity/vorticity formulation

is that the forces can be directly evaluated from known vorticity on the cylinder surface.

Hence for a known vorticity value on the cylinder surface, the lift and drag coefficients can

be calculated i. the r-O coordinates as

CL = -2 . +Tw cosSOdO, (11)

CD = 2'e (1- -w] sin OdO. (12)

In particular, we denote the positive values of Cr, in the -y direction.
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Although the aim of current research is to cover a wide zate of all physically attain-

able time-dependent rotation rates, the computational experimer so far have been per-

formed under the following three basic types of rotation: 1) time-h-rmonic rotatory os.

cillation, a(t) = A, sin 7rFt; 2) time-periodic rotation, a(t) = A 2 sin rf~tI; 3) c onstant

speed of rotation, a(t) = constant. All variables are in the nondimensional forrns. Here

F1 = 2afl/U, 2F2 = 2af 2/U is the reduced frequency and A = rFiB, i = 1, 2 is the reduced

velocity of the rotation, while fi, 6, is denoted as the forcing frequency and the angular

amplitude of the rotation, respectively.

The feasibility and accuracy of the numerical algorithm are tested by computing several

particular values of constant speed of rotation at Re = 200. The excellent agreement is

achieved for these chosen parameters against the experimental work of Coutanceau and

M6nard [9]. For a more precise account of the comparison with experiments, the reader is

referred to Chen et a. [14].

3.1 Time-Periodic Rotation vs. Time-Harmonic Rotatory Oscillation

In practice, when a cylinder is undergoing a time-dependent rotation with p;escribed

forcing frequency, then the characteristics of resulting flow field and force responses will be

essentially affected by two rt. npeting frequencies, i.e. the natural frequency and the forcing

frequency. It has been shown that at Re = 200, the natural frequency for a nonrotatiilg

circular cylinder (a = 0) is about F = 0.18. We first show numerical results of a forcing

frequency which lies in the neighborhood of the natural frequency. The temporal evolutions

of lift/drag are drawn separately in Fig. 1(a) for a time-periodic rotation a(t) = I sin 0.25t I

and a time-harmonic rotatory oscillation a(t) = sin 0.5t, respectively. In the case of time-

periodic rotation, the cylinder under control is rotated in the counterclockwise direction

about its axis with a time-periodic speed ratio. Notice that these two types of rotation are

employed by the same forcing frequency (F1 = 2F 2 = 0.16) which lies in the neighborhood

of the natural frequency. The numerical results clearly confirm the expected benefit of this

time-varying rotation for the lift/drag ratio. Examination of curves in Fig. 1(a) shows that
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the system of cylinder and wake will be "locked in" by the imposed forcing frequency. This

synchronization of t-- cylinder and wake is due to the forcing frequency of rotation which

lies in the neighborhood ,)f the natural frequency.

To demonstrate the influence of time-varying rotation, two additional values of forcing

frequency were used. One is imparted to a higher forcing frequency (which is twice that of

case (a)), while the other is imposed by a lower forcing frequency. Notice that neither of

these frequencies are in the neighborhood of the natural frequency. The benefit of changing

the rotation rate is also demonstrated in Figs. 1(b,c). In the case of time-periodic rotation, it

is of interest to study the effect of forcing frequency on time-averaged lift, drag and lift/drag

coefficients. Fig. 1(d) shows the variation of these time-averaged coefficients for the range

of 0.08 < 2F 2 < 0.32. The results indicate that forcing frequency has only slight effect on

time-averaged coefficients.

3.2 Effect of Angular Amplitude

In the case of time-periodic rotation, there is an interest in addressing the effect of

angular amplitude on the temporal evolution of forces while the forcing frequency is fixed

as a constant. Fig. 2(a) shows that the lift/drag ratio on the cylinder can differ significantly

at different angular amplitudes for c(t) = Al sin 0.314tj. Note that this plot corresponds

to a reduced frequency (2F2 = 0.2) which is in the neighborhood of natural frequency.

Three different values of angular amplitude are considered here, A = 1.0, 2.07, and 3.25.

Apparently, as can be seen from the figure, the larger angular amplitude yields an incremental

lift/drag almost timewise over the time-span of investigation (0 < t < 36). An examination

of the curve for A = 1.0 shows that it exhibits a clear evolution of periodicity with a frequency

which is precisely equal to the input forcing frequency. Although this periodic behavior is not

established for A = 2.07 and 3.25, their respective curves indeed exhibit an almost periodic

character with respect to the time evolution.

It is also of interest to examine the effect of angular amplitude on time-average lift, drag

and lift/drag coefficients. The results are shown in Fig. 2(b) for the range of 1 < A < 3.25.
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It illustrates that all the time-averaged force coefficients are almost linearly proportional

to the angular amplitude. Significant increment in lift coefficients with increasing angular

amplitude is particularly noticeable. However, slight increment in drag coefficients with

increasing angular amplitude is observed.

3.3 Constant Speed of Rotation

In order to increase the magnitude of the lift and reduce the magnitude of the drag, the

advantage achieved by the time-periodic rotation leads us to consider the case of constant

rotation. That is, the cylinder is rotated in the counterclockwise direction about its axis with

a constant speed ratio. Fig. 3(a) illustrates the temporal evolution of lift/drag coefficients

by varying the speed ratio in the range of 0 < a < 3.25. As the speed ratio increases to

2.07, every curve exhibits a substantial timewise improvement. However, it des not imply

that as the speed ratio further increases, the flow field will result in a further improvement

of lift/drag ratio. On the contrary, the adverse effect of speed ratio on the lift/drag ratio

is quite evident if a comparison is made between a = 3.25 and c = 2.07. This interesting

feature leads us to consider an optimal control problem corresponding to maximize the time-

averaged lift/drag coefficient for a fixed finite-time interval over the range of 0 < a < 3.25.

Fig. 3(b) show the effect of speed ratio on time-averaged lift, drag and lift/drag coeffi-

cients. It illustrates that the time-averaged lift is almost linearly proportional to the speed

ratio, while the time-averaged drag remains as a constant value up to a = 2, then mono-

tonically increases with speed ratio thereafter. Most importantly, the consequence of the

resulting time-averaged lift/drag demonstrates that it is not linearly proportional to the

speed ratio. As shown in Fig. 3(b), the highest value of speed ratio c = 3.25 is not the

optimal control which corresponds to the maximum value of time-averaged lift/drag. In-

stead, the maximum value occurs at a lower speed ratio, approximately at a = 2.38, and it

represents a substantial increase of 440% with respect to a lower speed ratio of a = 0.5.

4. CONCLUSIONS
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A numerical method has been developed to simulate the viscous flow past a rotating

cylinder with a variety of time-dependent rotation rates. The speed ratio a(t) can impose

significant influences on the characteristics of resulting flow field as well as the temporal

evolution of forces on the cylinder surface. A particular type of time-periodic rotation has

been demonstrated to provide an effective way of improving lift/drag performance against

the time-harmonic rotatory oscillation. Moreover, these results imply the important conse-

quences of a proper choice of the rotation rate that corresponds to the maximum value of

time-averaged lift/drag ratio.

Based on the results of this investigation, various optimal control problems may be formu-

lated that depend on the desired performance and control restriction. In the case of constant

speed of rotation, we find the optimal solution ci* = 2.38 that maximizes the time-averaged

lift/drag functional
24 [CL(t,a)1

The significant advantage achieved by rotation leads us to explore further the possible im-

plementation of a computational algorithm to calculate the optimal solution for a problem

without imposing any constraint on the rotation rate. Our future research will mainly focus

on the algorithm to compute the optimal control laws. The tools developed here will be

used to investigate the fundamental questions regarding control of separated flows by using

various boundary control mechanisms.
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FIGURE 1: Temporal evolution of lift/drag coefficients for a(t) =sin irFit and a(t)

I sin rF2tlI. (a) F1 = 2F2 = 0.16, (b) F, = 2F2 = 0.08, (c) !P1 = 2F2 = 0.32, (d) variation of

time-averaged lift, drag arnd lift/drag coefficients with forcing frequency.
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